What is the shape of data? How do we describe flows? Can we count by integrating? How do we plan with uncertainty? What is the most compact representation? These questions, while unrelated, become similar when recast into a computational setting. Our input is a set of finite, discrete, noisy samples that describes an abstract space. Our goal is to compute qualitative features of the unknown space. It turns out that topology is sufficiently tolerant to provide us with robust tools. This volume is based on lectures delivered at the 2011 AMS Short Course on Computational Topology, held January 4-5, 2011 in New Orleans, Louisiana. The aim of the volume is to provide a broad introduction to recen...

The editorial board for the History of Mathematics series has selected for this volume a series of translations from two Russian publications, Kolmogorov in Remembrance and Mathematics and its Historical Development. This book, Kolmogorov in Perspective, includes articles written by Kolmogorov's students and colleagues and his personal accounts of shared experiences and lifelong mathematical friendships. The articles combine to give an excellent personal and scientific biography of this important mathematician. There is also an extensive bibliography with the complete list of Kolmogorov's works--including the articles written for encyclopedias and newspapers. The book is illustrated with photographs and includes quotations from Kolmogorov's letters and conversations, uniquely reflecting his mathematical tastes and opinions.

Over the past 20-30 years, knot theory has rekindled its historic ties with biology, chemistry, and physics as a means of creating more sophisticated descriptions of the entanglements and properties of natural phenomena--from strings to organic compounds to DNA. This volume is based on the 2008 AMS Short Course, Applications of Knot Theory. The aim of the Short Course and this volume, while not covering all aspects of applied knot theory, is to provide the reader with a mathematical appetizer, in order to stimulate the mathematical appetite for further study of this exciting field. No prior knowledge of topology, biology, chemistry, or physics is assumed. In particular, the first three chapt...

The Combined Membership List (CML) is a comprehensive directory of the membership of the American Mathematical Society, the American Mathematical Association of Two-Year Colleges, the Mathematical Association of America, and the Society for Industrial and Applied Mathematics. There are two lists of individual members. The first is a complete alphabetical list of all members in all four organizations. For each member, the CML provides his or her address, title, department,institution, telephone number (if available), and electronic address (if indicated), and also indicates membership in the four participating societies. The second is a list of individual members according to their geographic...